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A method is proposed for calculating the velocity field of a nonlinearly vis- 
cous liquid in a cylindrical channel with an arbitrary transverse cross sec- 
tion. It is proved that a suspension model exists for such a liquid under the 
conditions of the interior problem. 

Formulation of the Problem. In the hydromechanics of a nonlinearly viscous liquid there 
exists a well known and interesting problem of great practical value: the problem of the 
velocity distribution in a laminar steady-state flow in a cylindrical channel with an arbi- 
trary transverse cross section. 

The system of equations of motion and continuity, describing this problem, can be writ- 
ten as 

+ / 

with the boundary condition 

V Ir = o, = I, 2, (2) 

where the second invariant of the strain-rate tensor has the. form 

(~ (YV. 

It is well known that an explicit solution of the problem (1)-(3) with arbitrary ~(I 2) 
does not exist. It is also well known [i] that the solution of the problem posed, consist- 
ing of finding the actual velocity field based on the principle of least action, is equi- 
valent to finding the minimum of the functional 

I, OP 

The f u n c t i o n s  wh ich  f u r n i s h  t h e  f u n c t i o n a l  F(V) a minimum a r e  u s u a l l y  found  n u m e r i c a l l y  
by v a r i a t i o n a l  m e t h o d s  [ 2 ] .  The v a r i a t i o n a l  a p p r o a c h  t o  t h e  p r o b l e m  ( 1 ) - ( 3 ) ,  h o w e v e r ,  h a s  
a number  o f  d r a w b a c k s .  These  a r e ,  f i r s t  o f  a l l ,  t h e  c o m p l e x i t y  o f  t h e  c h o i c e  o f  b a s i s  f u n c -  
t i o n s  f o r  r e g i o n s  w i t h  p a r t i a l  symmet ry  o r  no symmet ry  a t  a l l  and ,  s e c o n d ,  t h e  q u i t e  cumber -  
some a l g o r i t h m  f o r  n u m e r i c a l  i m p l e m e n t a t i o n .  F o r  a s y m m e t r i c  r e g i o n s ,  as  a r u l e ,  i t  i s  p o s -  
s i b l e  t o  c o n s t r u c t  s e v e r a l  v a r i a n t s  o f  b a s i s  f u n c t i o n s  w i t h  f u r t h e r  t e s t i n g  by n u m e r i c a l  
means .  I n  a d d i t i o n ,  t h e  l a c k  o f  symmet ry  i n c r e a s e s  t h e  number  o f  e q u a t i o n s  in  t h e  n o n l i n e a r  
s y s t e m  (4 )  a n d ,  c o n s e q u e n t l y ,  i t  i n c r e a s e s  t h e  c o m p u t a t i o n a l  t i m e  [ 3 ] .  

We p r o p o s e  be low a method  f o r  s o l v i n g  t h e  p r o b l e m  ( 1 ) - ( 3 )  w i t h o u t  t h e  i n d i c a t e d  d raw-  
b a c k s  and a much b e t t e r ,  t h a n  t h e  v a r i a t i o n a l  a p p r o a c h ,  r a t e  o f  c o n v e r g e n c e .  

Method o f  S o l u t i o n  and I t s  J u s t i f i c a t i o n .  I n  a p r e v i o u s  p u b l i c a t i o n  [4]  i t  was p r o -  
p o s e d  t h a t  t h e  p r o b l e m  ( 1 ) - ( 3 )  be  s o l v e d  by r e p l a c i n g  t h e  componen t s  o f  t h e  s h e a r  s t r e s s  
by t h e  e x p r e s s i o n s  
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Fig. 1 Fig. 2 
Fig. I. Region of interest R with the boundary F. 
Reduction to the case of the four-corner contour. 

Fig. 2. Orthogonal coordinate system in the region 
of interest. 

OV 1 OP au  OV 1 oP ou  
(Is) 0% 1 2 Oz ax~ ~(Is) oz ~ 2 az 0%3 (5)  

A f t e r  t h e  s u b s t i t u t i o n  (5)  t h e  s t a r t i n g  n o n l i n e a r  e q u a t i o n  (1)  i s  l i n e a r i z e d  i n t o  t h e  P o i s s o n  
equation, which is correct only for regions with full symmetry - rings and strips. In other 
cases, however, this approach will describe a Newtonian velocity distribution [5]. 

In order that the substitution (5) approach as close as possible the case of a flow of a 
nonlinearly viscous liquid of interest here and in order to obtain an explicit solution in 
the ideal case, we shall study the following substitution: 

OF OU OF OU 
- -  - - - - - : =  Z ( Z ~ ) - -  (6) (I2) 0%, % (%~) 8-~-Z~ ' ~(Is) a%2 0% 3 

Here the term (i/2)(,SP/Sz) is omitted in order to simplify the notation. 

We assume that X(X~) > 0 (otherwise, as a result of the substitution (6), we shall ob- 
tain from (i) a degenerate elliptic equation). We assume also [3] that ~(I 2) depends mono- 
tonically on 12. In order for the substitution (6) to be valid, it is necessary (and in a 
simply connected region sufficient also) that 

azl z (%~) - a%~ ~ (z~) ~ (12) �9 (7 )  

We denote 

ln~( /2)=M(12)  or ~ ( I s ) = e  M{m, lns  or s 

Th i s  can be done,  s i n c e  ~ > 0 and ~ i s  a mono ton ic  f u n c t i o n ,  w h i l e  X > 0. Then from (7)  

_e_aAz,ea~ OV OV OW OV O~V 0%1 + e_AMx~e~ + e_Ae M . . . .  e_AA~,eM O__V_V a% I 8%1o%3 a%2 § ei~Mx,e M 8% 2 ' -F e-~e ~ azlaz, 

We denote  8V/8•  = p, 8V/8• = q and making the  c a n c e l l a t i o n s ,  we o b t a i n  

Mz,q - -  M~,p := A~,q - -  Az~p. ( 8 ) 

The v e c t o r  (q ,  -p)  i s  p e r p e n d i c u l a r  t o  (p ,  q) ( i n d e e d ,  qp + ( -  pq) = O) and t h e r e f o r e  to  

8% I 0% 2 because of their proportionality. Therefore, the vector (q, -p) is oriented 

toward the tangent to the concur line of the function V(Xa) (and U(Xa)) , passing through the 

point (X~). The equality (8) means that the derivatives of M and A in the direction of the 
contour line are equal. From here it follows that 

M (& (%=)) = A (%~) + In C (%~), 
where C(xa)  i s  c o n s t a n t  on t h e  c o n t o u r  l i n e s  o f  t h e  f u n c t i o n  V(X~)(U(•  Then, a f t e r  t a k i n g  
the algorithm 

,~ (Is (Z=)) = ~ (Z~) C (%~). (9) 

It follows from (9) that for any region ~ it is possible to find X(X~) such that the 
Substitutions (6) for Eq. (i) are valid, i.e., 

1 Z(%~) = 
C (z=) 

(r ev V ( ev 
\ ~ oz, J + ~ az= J J 
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Thus, it has been shown here that the function X(Xa) existing for any simply connected 
region ~ depends on the form of the given region (dependence on C(Xa)) and on the specific 
form of the rheological model of the liquid (dependence on ~(I2)). 

The problem is to find the form of the function I(X~). Since the problem of the pre- 
cise choice of X(X~) for a known region is no simpler than the integration of the starting 
nonlinear equation, we shall study the inverse problem or those regions in which the sub- 
stitution (6) is justified with a fixed function X(X~). 

It follows from (9) that I2(xa) = ~_I(X(x~)C(x~)), where ~-i is the function inverse to 
(U is by definition monotonic). 

Since according to (6) the gradients of V(X~) and U(X~) are proportional, the contour 
lines of one of these functions are automatically contour lines of the other also. Since 
X(X~) is fixed, U(X~) will be the solution of the well-known problem 

Oxt Xt / ~ ~ = const, 

Ulr = O, 

(lO) 

and it may therefore be assumed that the contour lines of U(X~) have been found. 

The condition that (p, q) be the gradient of some function (which will automatically 
be the function V(Xe) - this follows from the uniqueness of the solution of (1)-(3)) consists 
of the condition that 

p dzl + q = 0 ( 1 1 )  

must  be p o t e n t i a l  f o r  any c l o s e d  c o n t o u r  r in  a .  As u s u a l ,  r can  be r e g a r d e d  as  b e i n g  
" b r o k e n , "  and c o n s i s t i n g  o f  p i e c e s  o f  c o n t o u r  l i n e s  o f  U(X~) and p i e c e s  o f  t r a j e c t o r i e s  o r -  
t h o g o n a l  t o  them.  The p r o b l e m  r e d u c e s  t o  t h e  c a s e  o f  t h e  f o u r - c o r n e r  c o n t o u r  shown in  F i g .  1. 

S i n c e  t h e  v e c t o r  (p ,  q) i s  p e r p e n d i c u l a r  t o  t h e  c o n t o u r  l i n e s ,  t h e  i n t e g r a l s  a l o n g  F 1 
and F i ,  which  can  be i n t e r p r e t e d  as  t h e  work ,  e q u a l  z e r o .  For  t h i s  r e a s o n  t h e  i n t e g r a l s  
a l o n g  F 3 and F 4 ( i . e . ,  a l o n g  t r a j e c t o r i e s  o r t . h o g o n a l  t o  t h e  c o n t o u r  l i n e s  o f  U ( x a ) )  e q u a l  

[ pd)h + qdx2 = [ " l /y  + q~dS, 
rs Pn 

; pdzl + qdxi= ~ ]//" + q'dS. 

From here, we can write the following in terms of the function inverse to' ~: 

.[ V c (x i)dS = V LI c dS, (12) 
rs I'~ 

i.e., the condition that (ii) must be potential has transformed into (12). 

We shall use the orthogonal coordinate system introduced above -U(X~) and the trajec- 
tories orthogonal to them. Let P be a point in ~, r 0 is the line from a second family of 
lines of the coordinate system, P is a point lying on F 0 and on the same contour line as P 
( F i g .  2 ) .  

Since the integral equality (12) can be checked on small integration segments, it may 
be assumed that the integrand varies insignificantly on this segment. Therefore the inte- 
gral is the product of the value of the function and the length of the integration interval. 
Transferring these lengths of two segments or orthogonal trajectories confined between 
close contour lines to one side of the equality, we obtain 

= v  
Then the quantity 

;~ (P, ro) --- lira PP1 
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Fig. 3. Computed dimensionless velo- 
city profiles along the axes of sym- 
metry of the rectangular and semicir- 
cular channels: i) Newtonian profile; 
2) non-Newtonian profile; 3) velocity 
profile at the first iteration after 
introducing the function X(X~)~ 

can be called the divergence (fan) of the contour lines at P referred to F 0. Here Pl lies 
on the line from the second family of coordinate lines, passing through P; PI is the corres- 
ponding point on F 0. 

Thus, the condition (12) is equivalent to the equality 

~_, (~ (/5) C (/~)) = ? (P, Fo) 9_z (~ (P) C (P)), ( 13 ) 

i.e., for every contour line there exists a number C such that y(P, F0)~_l(%(P)C) is inde- 
pendent of the position of P on the contour line. This is the necessary and sufficient con- 
dition for the applicability of the substitution (6) with the given function l(Xa) to the 
problem (1)-(3) in the region ~. 

The above analysis showed that for any region ~ there always exists a function X(X~) 
which enables the explicit solution of the problem formulated with the help of the substitu- 
tion (6). It was shown above that the form of %(X~) depends on the form of the region and 
on the rheological model of the non-Newtonian liquid. If l(Xe) can be found, then the non- 
linear, relative to V(Xe) equation reduces to a linear equation for U(X~) and to the alge- 
braic system (6). 

As already mentioned, the problem of finding an exact expression for X(X~) is no simpler 
than the problem of integrating the starting nonlinear equation, but an approximate choice 
of I(X~), based only on the geometry of the region, already makes it possible to improve 
substantially the first iteration in the numerical realization of the problem and substan- 
tially shorten the calculations of the velocity field. 

We shall illustrate this with a numerical example. Consider the flow of a model New- 
tonian liquid (the solution Na-carboxymethyl nitrocellulose) in a rectangular channel with 
sides 2a = 0.18 m and 2b = 0.015 m and a semicircular channel with radius R = 0.006 m with 
~P/Sz = 600 H/m 3. For the function ~(I~) we shall use the generalized theological Kutate- 
ladze-Khabakhpasheva law [6] for a structurally viscous non-Newtonian liquid d~, = -~,nd~, 
in the particular, or greatest practical interest form 

~, = exp (-- ~,), (14) 

where ~, ----- (~, -- ~0)/(qD -- q~0); T, = 0 (~-- TI)/(~ -- ~0). 

The parameters of the model liquid are as follows: 0 = 0.1981(Pa2"sec)-l; ~0 = 1.9 (Pa" 
sec)-1; ~ = 13.7 (Pa.sec)-1; Tl = 0. 

The dimensions of the channels and the conditions of flow are identical to those given 
in [3]. The functions U(X~) for both channels are also given in [3]. 

The functions X(X~), based on the geometry of the region, are chosen in the following 
form: for a rectangle 

=~ Zl-- + Z~ , (15) 
a~ Xl ~ Z~ ] 

for a semicircle 

(16) 

The algorithm of the numerical realization of the problem with the substitution (6) is 
completely analogous and is described in detail in [3], where the substitution (5) is used 
for the solution. The difference lies only in the calculation of the matrix A(X~) (simul- 
taneously with 8U/Sx~). 
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As the numerical calculations showed, in order to achieve a relative error of e = i0 -# 
in the calculation of the flow in a rectangular channel three exterior iterations in the 
non-Newtonian viscosity and three internal iterations are required for finding V(X~) by 
the method of variable directions (MVD). 

The following results were obtained for a semicircular channel three external and four 
internal iterations. 

The somewhat slower rate of convergence for the semicircular channel is a result of the 
fact that there is no symmetry with respect to one of the axes and the corresponding be- 
havior of U(X~). 

Curves of the velocities for both types of channels were constructed from the computa- 
tional results (Fig. 3). The curves 1 in Fig. 3 correspond to the Newtonian velocity pro- 
file, obtained with the help of the substitution (5) at the first step of iteration. The 
curves 2 correspond to the non-Newtonian velocity profile with e = 10 -# . The curves 3 
correspond to the velocity profile obtained after the first iteration with the help of the 
substitution (6). As is evident from Fig. 3, the curves 3 correspond much more closely 
than the Newtonian profile to the non-Newtonian velocity distribution sought. 

Thus, the proposed method for calculating the velocity field in cylindrical channels 
with an arbitrary transverse cross section introducing the function %(X~) is distinguished 
by a high rate of convergence, short computing time (which is important in solving systems 
of equations of heat and mass transport), and the simplicity of the algorithm. 

In the future, tables of approximate functions I(X~) will be constructed for a number 
of regions and rheological laws most often encountered in practice, and a method for finding 
X(X~) will be presented. 

"Suspension" Model of a Nonlinearly Viscous Liquid. Aside from the improvement of the 
iteration approach to the solution of hydrodynamic nonlinear internal problems, the method 
developed here enables the representation of the internal flow of a nonlinearly viscous 
liquid in a fundamentally new manner. 

The essence of the method consists of taking the non-Newtonian properties of the liquid, 
determining the viscosity distribution over the cross-sectional area of the channel into 
account separately from the hydrodynamic characteristics which are common to all liquids. 

We write the starting equation (i) as 

div (p (Is) V V) = const. ( 17 ) 

The i n t r o d u c t i o n  of  X(Xa) and the  s u b s t i t u t i o n  of  ( 6 ) ,  whose e x i s t e n c e  and v a l i d i t y  have j u s t  
been proved ,  r educes  Eq. (17) (o r  ( 1 ) )  t o  the  e q u a t i o n  

div (~ (~)  vU) = const. ( 18 ) 

We also write the equation for the case of the flow of a Newtonian liquid 

div(poVV) = const (19) 

If the region ~ sought is partitioned into infinitely small sections on each of which 
it may be assumed that I(X~), then it is obvious that Eq. (18) on each of them assumes a 
Newtonian form (19). Then the significance of the function U(X~) lies in the fact that it 
describes the velocity distribution for steady-state motion of a liquid with variable vis- 
cosity, depending only on the coordinates of a point at the cutoff of the pipe. 

In other words, it may be assumed that the flow of a nonlinearly viscous liquid in a 
cylindrical channel with an arbitrary transverse cross section is divided into the flow of 
infinitely narrow volumes of immiscible Newtonian liquids with different viscosity. 

The choice of I(X~) actually represents the replacement of the internal flow of a non- 
linearly viscous liquid by a set of immiscible elementary volumes of Newtonian liquids with 
a viscosity distribution ~(X~) along the cross section of the channel. This flow comprises 
the "suspension" model of a nonlinearly viscous liquid. 

NOTATION 

X~ = (Xx and X2), a point in the two-dimensional (~ = 1,2) Euclidean space with the co- 
ordinates XI and X2; z, a coordinate along the channel; V(X~), velocity of the flow in a di- 
rection perpendicular to ~; ~, a region with the boundary F; ~, effective viscosity of the 
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Newtonian liquid; 8P/Sz, axial component of the pressure gradient; I2, second invariant of 
the strain-rate tensor; F(V), functional to be minimized; U(X~), an auxiliary function 
which is the solution of the Dirichlet problem for Poisson's equation in the region ~ under 
study; I(Xa), an auxiliary functional depending on the form of the region ~ and the form 
of the rheological model; C(X~), a constant contour line of V(X~); dS, an element of arc; 
FI, F2, Fa, elements of the contour F; F0, one of the lines of the orthogonal coordinate sys- 
tem; P, a point in ~, lying on one of the contour lines of U(Xa); P, PI, points lying on F0; 
#(P, F0) , divergence of the contour lines; Pl, a point lying on the line from the second 
family of coordinate lines; a and b, half-sides of the rectangle; ~0, ~=, fluidity of the 
liquid in the limits �9 + 0 and �9 + ~; z, intensity of the tangential shear stresses; ~I, 8, 
limit and measure of the structural stability of the liquid; n, rheological parameter; s, 
fixed error of the iteration method; V, average flow rate of the flow; R, radius of the 
circle of the semicircular channel; ~0, Newtonian viscosity; and U-l, function inverse to ~. 
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A FEATURE OF HEAT TRANSFER TO ORGANIC HEAT-TRANSFER MEDIA 

N. L. Kafengauz and V. A. Gladkikh UDC 551~305.1.536.2 

It is shown that the nature of the changes in the wall temperature during heat 
transfer to an organic heat-transfer medium accompanied by the formation of 
deposits depends strongly on the roughness of the surface. 

Heat transfer to organic liquids at high temperatures of the surfaces cooled by them is 
accompanied by the formation of carbonaceous deposits [i]. These deposits have very poor 
thermal conductivities and even in thin layers, they cause a considerable overheating of the 
walls or heat exchangers and other equipment in which the organic liquids are used as heat- 
transfer media, coolants, or for other purposes. This problem is particularly important 
in nuclear reactors. The formation of deposits on the surfaces of fuel elements is one of 
the main reasons which limits the use of reactors with organic heat-transfer media [2. 3]. 

Usually the formation of deposits causes a continuous increase of the temperature of the 
surface being cooled. However, many investigators have observed "anomalous" temperature 
changes of the surfaces being cooled in some experiments during the formation of deposits on 
the walls: during the first few minutes when the formation of the deposit occurs most inten- 
sively the wall temperature decreases, i.e., heat transfer improves. 

This phenomenon has been related to distortions of the experimental results caused by 
the special features of heating the fuel element by an electric current with a nonuniform 
formation of the deposit on the wall surface, to the unsteady-state nature of the heat trans- 
fer in the first minutes of the experiment, and to various other causes. 

We have experimentally established that the nature of the temperature changes of the sur- 
face being cooled during the formation of solid deposits on it depends on its roughness. 
"Anomalous" temperature changes of the wall are observed only in the experiments in which 
fuel elements with smooth (polished) surfaces are used. 

Theexperiments were carried out in a laboratory heat exchange apparatus, which consisted 
of a closed hydraulic loop of stainless steel piping. The liquid being investigated was 
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